RSI-CB: A Large Scale Remote Sensing Image Classification Benchmark via Crowdsource Data
نویسندگان
چکیده
Remote sensing image classification is a fundamental task in remote sensing image processing. In recent years, deep convolutional neural network (DCNN) has seen a breakthrough progress in natural image recognition because of three points: universal approximation ability via DCNN, large-scale database (such as ImageNet), and supercomputing ability powered by GPU. The remote sensing field is still lacking a large-scale benchmark compared to ImageNet and Place2. In this paper, we propose a remote sensing image classification benchmark (RSI-CB) based on massive, scalable, and diverse crowdsource data. Using crowdsource data, such as Open Street Map (OSM) data, ground objects in remote sensing images can be annotated effectively by points of interest, vector data from OSM, or other crowdsource data. The annotated images can be used in remote sensing image classification tasks. Based on this method, we construct a worldwide large-scale benchmark for remote sensing image classification. This benchmark has two sub-datasets with 256 × 256 and 128 × 128 sizes because different DCNNs require different image sizes. The former contains 6 categories with 35 subclasses of more than 24,000 images. The latter contains 6 categories with 45 subclasses of more than 36,000 images. The six categories are agricultural land, construction land and facilities, transportation and facilities, water and water conservancy facilities, woodland, and other lands, and each has several subclasses. This classification system of ground objects is defined according to the national standard of land-use classification in China and is inspired by the hierarchy mechanism of ImageNet. Finally, we conduct many experiments to compare RSI-CB 1 with the SAT-4, SAT-6, and UC-Merced datasets on handcrafted features, such as scale-invariant feature transform, color histogram, local binary patterns, and GIST, and classical DCNN models, such as AlexNet, VGGNet, GoogLeNet, and ResNet. In addition, we show that DCNN models trained by RSI-CB have good performance when transferred to another dataset, that is, UC-Merced, and good generalization ability. Experiments show that RSI-CB is more suitable as a benchmark for the remote sensing image classification task than other benchmarks in the big data era and has potential applications.
منابع مشابه
Palarimetric Synthetic Aperture Radar Image Classification using Bag of Visual Words Algorithm
Land cover is defined as the physical material of the surface of the earth, including different vegetation covers, bare soil, water surface, various urban areas, etc. Land cover and its changes are very important and influential on the Earth and life of living organisms, especially human beings. Land cover change monitoring is important for protecting the ecosystem, forests, farmland, open spac...
متن کاملApplication of remote sensing and geographical information system in mapping land cover of the national park
The study was conducted with the objective of mapping landscape cover of Nechsar National park in Ethiopia to produce spatially accurate and timely information on land use and changing pattern. Monitoring provides the planners and decision-makers with required information about the current state of its development and the nature of changes that have occurred. Remote sensing and Geographical Inf...
متن کاملOn the Selective and Invariant Representation of DCNN for High-Resolution Remote Sensing Image Recognition
Human vision possesses strong invariance in image recognition. The cognitive capability of deep convolutional neural network (DCNN) is close to the human visual level because of hierarchical coding directly from raw image. Owing to its superiority in feature representation, DCNN has exhibited remarkable performance in scene recognition of high-resolution remote sensing (HRRS) images and classif...
متن کاملPatternNet: A Benchmark Dataset for Performance Evaluation of Remote Sensing Image Retrieval
Remote sensing image retrieval (RSIR), which aims to efficiently retrieve data of interest from large collections of remote sensing data, is a fundamental task in remote sensing. Over the past several decades, there has been significant effort to extract powerful feature representations for this task since the retrieval performance depends on the representative strength of the features. Benchma...
متن کاملEvaluating the Potential of Texture and Color Descriptors for Remote Sensing Image Retrieval and Classification
Classifying Remote Sensing Images (RSI) is a hard task. There are automatic approaches whose results normally need to be revised. The identification and polygon extraction tasks usually rely on applying classification strategies that exploit visual aspects related to spectral and texture patterns identified in RSI regions. There are a lot of image descriptors proposed in the literature for cont...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1705.10450 شماره
صفحات -
تاریخ انتشار 2017